GVIP Vehicle Inspection

MISSOURI GATEWAY VEHICLE INSPECTION PROGRAM (GVIP) EMISSIONS INSPECTOR TRAINING GUIDEBOOK

Unit: MOTRA

r.

Inspector: BRI002200 - CHUCK GEE

ing the built in camera, take photos of the the vehicle, including the Rear of the Vehicle, th shboard VIN, Odometer, and if required the Door GVWR label. Tap an icon to take a phot or an existing photo to retake. You can take additional photos as well.

OBD Interface Module Self Test: Passed Firmware: 1.05.8

Serial:	WPOO	01916
Voltage:	12.1	Pass
J1850PWM		Pass
J1850VPW		Pass
19140808	-	Pass
KWPS8FE9		Pass
KWPF8FE9	-	Pass
ICAN11bt500		Pass
ICAN29bt500	-	Pass
ICAN11bt250	-	Pass
ICAN29bt250	-	Pass

To Is Is is PN: 4002010K SN: ES000608

6/19/2017 10:48:09 AM Station: CC02

Offline Tests: 0

Status: 🔵

CLASSROOM STUDY GUIDE

100

Next

10

Cancel

ERROR COMMUNICATING WITH VEHICLE. CHECK CABLING FROM THE OBD DAD DEVICE LEAD TO THE VEHICLE'S OBD DIAGNOSTIC LINK CONNECTOR (DLC). PUSH POWER BUTTON ON OBD DAD DEVICE IF NECESSARY

Table of Contents

Missouri GVIP Inspector Training Program1
1. MO GVIP Inspector Training 1
1.2 Course Outline
1.3 GVIP INSPECTOR TRAINING – IMPORTANT ACRONYMS
2. GVIP TESTING EQUIPMENT
2.1 MISSOURI DECENTRALIZED ANALYZER SYSTEM 4
2.2 Network Nano-Router Overview
2.3 GVIP Ruggedized Computer Tablet Overview
Wireless Keyboard and Optional Docking Station6
2.4 Tablet On/Off and Power Port6
Zoomed In On Control Buttons7
2.5 Rear Camera, Fingerprint Scanner7
2.6 Bar Code Scanner
2.7 Inspection Tablet Operation
USB Ports
2.8 Tablet Usage and Care9
2.9 Tablet Screen Information pg19
2.10 Tablet Screen Information pg2
2.10 Tablet Screen Information pg2 10 2.11 Data Acquisition Device (DAD) Overview 11
2.10 Tablet Screen Information pg2 10 2.11 Data Acquisition Device (DAD) Overview 11 2.12 DAD Controls and Indicators 11
2.10 Tablet Screen Information pg2 10 2.11 Data Acquisition Device (DAD) Overview 11 2.12 DAD Controls and Indicators 11 2.13 DAD USB and 5 Volt DC Input Ports 12

2.15 DAD Reset Switch	3
2.16 DAD Power LED Operation:	3
DAD Operation: Power LED Operation Summary1	4
2.17 DAD Powered by Internal Supply14	4
2.18 DAD Status Indicator-Wireless Connection	5
DAD Operation: Status LED Operation Summary1	5
2.19 Wireless Connection: Status Indicator During Vehicle Data Transmission	6
2.20 Vehicle Communication Error	6
2.21 DAD No Wireless Connection To Tablet 1	7
DAD Wireless Communication Specifications1	7
2.22 DAD USB Cable Connection To Tablet	8
2.23 DAD Self-Test Module Overview	8
2.24 DAD Self-Test	9
2.25 DAD Self-Test	9
2.26 Self-Test USB Tablet Connection	0
2.27 Self-Test Module USB Connection	0
2.28 Self-Test Module Power Connection	1
2.29 DAD Self-Test DLC Connection	1
Self-Test Sequence	2
2.30 Self-Test Overall Results DAD info	2
Self-Test Pass	3
2.31 Self-Test Fail	3
Self-Test Voltage Failed	.4

2.32 Self-Test Results: Specific Protocols
2.33 DAD Cable Service
2.34 Inspection Sticker Printer 25
2.35 Sticker Printer General Usage 26
2.36 Opening Top Cover
2.37 Loading Stickers
Loading Stickers (Print Media) – Installing Media on Holders
Loading Stickers (Print Media) – Adjusting Guides27
Loading Stickers (Print Media) – Final Steps28
Calibrate Sensor
2.38 Loading Ribbon
Removing Used Ribbon and Spool29
STICKER PRINTER Installing Empty Spool
Loading New Ribbon – Final Steps
2.39 Brother Laser Printer
2.40 VIR Printer Normal Use and Maintenance
2.41 Control Panel Navigation
2.42 Toner Life
2.43 Drum Life
2.44 Removing Toner/Drum Assembly
2.45 Separating Toner Cartridge from Drum Unit
2.46 Installing New Toner Cartridge
2.47 Replacing Drum and Counter Reset

	2.48 GVIP Hardware Part # and Name List	. 35
3.	. Air Pollution Problems, Causes, and Effects	. 36
	3.1 VEHICLE EMISSIONS: AIR POLLUTION PROBLEMS, CAUSES & EFFECTS	. 36
	3.2 MO Air Pollution Introduction	. 36
	Ozone: Health and Environmental Concerns	. 37
	Ozone Monitoring	. 37
	3.5 Ozone Formation	. 38
	3.6 CO	. 38
	Chemistry of combustion	. 39
	3.7 CO Health and Environmental Concerns	. 39
	3.8 Summary-Air Pollution Problems	. 40
4.	. Inspection Program Purpose, Function and Goals	. 41
	4.1 Introduction to the Emissions Inspection Program	. 41
	4.3 Summary	. 42
5.	. Inspection Regulations and Procedures	. 43
	5.1 Introduction to the Inspection Regulations	. 43
	5.2 Emissions Inspection Periods	. 43
	5.3 Emissions Inspection Fees	. 44
	5.4 Emissions Inspection Oversight Fees	. 44
	5.5 Emissions Inspector Requirements (1-3)	. 45
	5.6 Emissions Inspector Requirements (4-6)	. 45
	5.7 Emissions Inspector Requirements (7-8)	. 46
	5.8 Emissions Inspection Procedures	. 46

5.9 Special Notes	. 47
Inspecting Vehicles As Received	. 47
5.10 Beginning an Official Inspection	. 48
5.11 Inspection Menu	. 48
5.12 Inspector Logon	. 49
5.13 Inspector Logon via Fingerprint	. 49
5.14 Inspector Logon Not Valid	. 50
5.15 VIN Entry	. 50
VIN Entry-Offline Testing	. 51
5.16 Vehicle Information Entry	. 51
5.17 Information Confirmation	. 52
5.18 Previous Test Information	. 52
5.19 Required Vehicle Images	. 53
5.20 Taking Required Photos	. 53
5.21 Non-Functional Camera	. 54
5.22 MIL Visual Inspection - KOEO	. 54
5.23 MIL Visual Inspection - KOER	. 55
5.24 MIL Visual Inspection - Complete	. 55
5.25 Connect DAD to Vehicle DLC	. 56
5.26 Vehicle Communications	. 56
5.27 OBD Test Results Summary	. 57
5.28 VIR	. 57
5.29 VIR-Passing Inspection	. 58

	5.30 VIR: Vehicle DLC, Communications Requirements and Results	. 58
	Communication Protocols	. 59
	Data Link Connector	. 59
	5.31 VIR-Monitors and Readiness Codes	. 60
	Readiness Requirements	. 60
	5.32 VIR-Failure	. 61
	5.33 VIR: MRRT	. 61
	5.34 Emissions Inspection Procedures	. 62
	5.35 Emissions ReInspection Procedures	. 62
	5.36 Exemptions and Waivers	. 63
6	. Test Procedure Details and Design Rationale	. 64
	6.1 Intro Test Details	. 64
	6.2 MIL Visual Inspection	. 65
	6.3 MIL Appearance/Operation	. 65
	6.4 MIL-KOEO	. 66
	6.5 MIL-KOEO_NOTES	. 66
	Short MIL ON Time	. 67
	Flashing MIL KOEO-Readiness	. 67
	6.6 MIL-KOEO_NOTES pg2	. 68
	6.7 MIL-KOER	. 68
	MIL Flashing during KOER	. 69
	6.8 DLC Details	. 69
	6.9 DLC Location	. 70

6.10 DLC Connections	70
6.11 Tampered or Damaged DLC	71
6.12 MIL Command	71
6.13 Initiate OBD Communications	72
6.14 Monitor Readiness	72
6.15 VIR and Readiness Codes	73
6.16 VIR-Monitors and Readiness Codes	73
Monitor Unsupported But Emission Control System Present On Vehicle	74
6.17 Monitors and Readiness Code Requirements	74
Diesel Vehicle Readiness Requirements	75
6.18 CAT/O2 Monitor Requirement	75
Monitor Unsupported But Emission Control System Present On Vehicle	76
6.19 Readiness Code Information for Drivers	76
Startup Temperature Information	77
Cruise Information	77
6.20 Readiness Codes Reset	78
6.21 DTCs	78
DTC Details	79
Specific DTCs-Examples	79
DTC and MIL Illumination	80
DTC Related Service Modes	80
6.22 Vehicle Communications	81
6.23 Emissions Testing Summary	81

7.	Emission Control Devices and Systems	. 82
	7.1 Control Systems Introduction	. 82
	7.2 Control Systems pg 2	. 82
	7.3 AIR Systems	. 83
	AIR OBD Monitoring	. 83
	7.4 A/C Systems	. 84
	7.5 Catalytic Converter Systems	. 84
	Damaged TWC	. 85
	TWC OBD Monitoring	. 85
	7.6 Crankcase Ventilation Systems - Spark Ignition Engines	. 86
	PCV Valve Details	. 86
	PCV System OBD Monitoring	. 87
	7.7 Crankcase Ventilation Systems - Compression Ignition Engines	. 87
	7.8 EECS	. 88
	7.9 EGR Systems	. 88
	7.10 EGR Systems pg 2	. 89
	EGR OBD Monitor	. 89
	EGR System Variations	. 90
	7.11 O2S Systems	. 90
	7.12 O2S Systems	. 91
	O2S System OBD Monitoring	. 91
	7.13 Heated O2S Systems	. 92
	7.14 Diesel Exhaust Catalyst Systems	. 92

	7.15 Emission Control Devices and Systems Summary	. 93
8.	Quality Control Procedures and Purpose	. 94
	8.1 Quality Control	. 94
	8.2 Enforcement Actions	. 94
	Lockouts pg1	. 95
	Lockouts pg2	. 95
	8.3 Covert Vehicle Program	. 96
	8.4 Quality Control for Inspection Stations	. 96
	8.5 Section Summary	. 97
9.	Public Relations	. 98
	9.1 Public Relations	. 98
	9.2 Operating Hours-Customer Wait Times	. 98
	9.3 Station Signs and Poster Display	. 99
	9.4 Public Relations - Summary	. 99
1(). Vehicle Inspection Safety and Health Issues 1	100
	10.1 Inspection Safety 1	100
	10.2 Course Summary	100

Missouri GVIP Inspector Training Program

1. MO GVIP Inspector Training

Gateway Vehicle Inspection Program Inspector Training

1.2 Course Outline

ABOUT THIS COURSE:

This training program provides the rules and regulations that need to be followed to correctly perform vehicle emissions inspections in accordance with the Code of State Regulations (CSR) that enact the provisions of 643.300 - 643.355 Revised Statutes of Missouri (RSMo).

This training program also details:

- Hardware components used in the GVIP;
- Test equipment operation, testing sequences, and equipment maintenance;
- The air pollution problem in the St. Louis nonattainment area, causes and effects;
- The purpose, function and goals of the GVIP;
- Inspection regulations and procedures;
- Technical details of the test procedures and the rationale for their design;
- Emission control device function, configuration, and inspection;
- Quality control procedures and their purpose;
- Public relations; and
- Safety and health issues related to the inspection process.

1.3 GVIP INSPECTOR TRAINING – IMPORTANT ACRONYMS

The acronyms/abbreviations listed below are frequently used in the emissions testing field and being familiar with these terms will aid the user in understanding the material presented in this training program.

APCP – Air Pollution Control Program CAA – Clean Air Act DLC - Data Link Connector DOC – Diesel Oxidation Catalyst DPF - Diesel Particulate Filter DTC - Diagnostic Trouble Code EGS – Exhaust Gas Sensor EGR – Exhaust Gas Recirculation **GVIP – Gateway Vehicle Inspection Program** GVWR – Gross Vehicle Weight Rating I/M – Inspector / Mechanic **IM** – Inspection Maintenance KOEO – Key On Engine Off KOER – Key On Engine Running MIL – Malfunction Indicator Light MDAS – Missouri Decentralized Analyzer System MDNR – Missouri Dept. of Natural Resources MDOR - Missouri Dept. of Revenue MSHP – Missouri State Highway Patrol MVI – Motor Vehicle Inspection division NAAQS - National Ambient Air Quality Standards NMHC - Non-Methane HydroCarbon NOx – Nitrogen Oxides O2S – Oxygen Sensor **OBD** – On-Board Diagnostics PCM – Powertrain Control Module SCR – Selective Catalyst Reduction VID – Vehicle Inspection Database VIPMS – Vehicle Inspection Program Management System VIR – Vehicle Inspection Report

2. GVIP TESTING EQUIPMENT

2.1 MISSOURI DECENTRALIZED ANALYZER SYSTEM

c

Network nano-router

Sticker printer

Data Acquisition Device (DAD)

Self-Test Module

2.2 Network Nano-Router Overview

2.3 GVIP Ruggedized Computer Tablet Overview

Wireless Keyboard and Optional Docking Station

2.4 Tablet On/Off and Power Port

WORLDWIDE

INC

PRODUCTS

2.5 Rear Camera, Fingerprint Scanner

2.6 Bar Code Scanner

2.7 Inspection Tablet Operation

USB Ports

clean the screen or enclosure. 🚺 The same lint-free cloth and mild display cleaning solution can be used for both the barcode and fingerprint scanner lens.

the power supply and USB cables.

the equipment.

VORLDWIDE VIRONMENT

INC

RODUCTS

To clean the keyboard, use a can of compressed air to blow out any foreign matter. To clean the sides of the keys, use a cotton swab dipped in isopropyl alcohol and gently swab around each key.

2.9 Tablet Screen Information pg1

WORLDWIDE ENVIRONMENTA PRODUCTS, INC.

2.11 Data Acquisition Device (DAD) Overview

2.12 DAD Controls and Indicators

2.13 DAD USB and 5 Volt DC Input Ports

2.14 DAD Power Switch

2.15 DAD Reset Switch

The switch is recessed into the DAD housing to prevent accidental activation. A small instrument, such as a paperclip can be used to access and depress the switch. Press and hold the switch in the closed position for at least 1 second and then release. The Status and Power LEDs will extinguish while the Reset button is closed and should resume normal operation when the button is released. Retry whatever process was unsuccessful prior to using the Reset button.

2.16 DAD Power LED Operation:

Vehicle DLC details are presented in Section 6. Click here for a summary of the Power LED displays

DAD Operation: Power LED Operation Summary

Power LED Operation Summary Power LED Power LED Flashing Blue DAD operating on internal power supply Image: Colspan="2">Power LED DAD operating on internal power supply Flashing Blue DAD connected to vehicle or emulator Solid Red with Flashing Blue DAD connected to vehicle or emulator Solid Green with Flashing Blue DAD connected to vehicle or emulator Solid Green with Flashing Blue DAD connected to vehicle or emulator Solid Green with Flashing Blue Image: DAD connected to vehicle or emulator Solid Green with Flashing Blue Image: DAD connected to vehicle or emulator Solid Green with Flashing Blue Image: DAD connected to vehicle or emulator Solid Green with Flashing Blue Image: DAD connected to vehicle or emulator Image: Colspan="2">Solid Green with Flashing Blue

2.17 DAD Powered by Internal Supply

DAD Power LED Operation: DAD Powered On By Internal Power Supply

If some type of malfunction exists with the vehicle's electrical system and there is an interruption to the power supply at DLC pin 16, the DAD can fully operate with the internal power supply. A lack of power from vehicle DLC will be evident by the DAD's Power LED not illuminating when the DAD is connected to the vehicle DLC.

To operate the DAD using the internal power supply, press and hold the red Power button for 3 seconds and then release.

While the DAD is operating on the internal power supply, the blue Power LED will flash on and off.

tocate the viewclass one owneyworts claws conventions such that have not one ope device intercept to the power and the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the view conventions and the power of the ope of the power of the ope of the power of the ope of the power of the power of the ope of the power of the p

Click here for a summary of the Power LED displays

2.18 DAD Status Indicator-Wireless Connection

DAD Operation: Status LED Operation Summary

2.19 Wireless Connection: Status Indicator During Vehicle Data Transmission

2.20 Vehicle Communication Error

2.21 DAD No Wireless Connection To Tablet

DAD Status Indicator: No Wireless Connection to Tablet

If the DAD is unable to connect with the inspection tablet using a wireless connection, the Status LED will turn on and off at regular intervals.

The on/off times will vary as the DAD attempts different connection routines.

If the DAD indicates a wireless connection is not present, move the DAD so there is an unobstructed "line-of-site" between the DAD and nano-router. If a connection is still unavailable, move the DAD (and possibly the vehicle) closer to the nano-router location.

The DAD and nano-router must be within 30 feet (12.2 meters) of each other for a wireless connection to be possible.

DAD Wireless Communication Specifications

DAD Wireless Communication Specifications

The DAD is designed to meet most shop conditions. The DAD meets the following wireless specifications:

- No loss of communication between the DAD and nano-router when they are within 30 feet (12.2 meters) of each other with a clear path for signal transmission (no walls or other obstructions).
- No loss of communication between the DAD and nano-router while either the DAD or nano-router is within 2 feet (0.6 meters) of a vehicle engine's Original Equipment Manufacturer (OEM) (not modified) electronic engine controls, while the vehicle's engine is running,
- No loss of communication between the DAD and nano-router, while either are within 5 feet (1.5 meters) of up to a five horsepower (5-hp.) properly operating Alternating Current (AC) electric motor,
- No loss of communication between the DAD and nano-router, while either are subjected to Citizen's Band (CB). Emergency Band, or other types of radio transmissions.

2.22 DAD USB Cable Connection To Tablet

2.23 DAD Self-Test Module Overview

2.24 DAD Self-Test

2.25 DAD Self-Test

2.26 Self-Test USB Tablet Connection

2.27 Self-Test Module USB Connection

2.28 Self-Test Module Power Connection

2.29 DAD Self-Test DLC Connection

Self-Test Sequence

2.30 Self-Test Overall Results DAD info

DAD	SELF-TEST RESULTS
GVIP Vehicle Inspec OBD Self Test	
U24/2017 43035 PM Stution: CCB2 Unit: MOTRAINING Versio	Exit Overall test results are listed on the top line and will be shown as either "Passed" or "Failed".
OBD Interface Module Self Firmware: 1.05.8 Serial: WP001916 Voltage: 12.2 - Pass	Test Passed Firmware version identification follows Overal Test Results, and may be requested by the WEP Service representatives. The DAD serial number is listed next and should match the serial number information on the DAD label affixed to the back case.
Measured volt	age between DLC pin 16 and ground is displayed below the DAD serial number.

Self-Test Pass

2.31 Self-Test Fail

Self-Test Voltage Failed

2.32 Self-Test Results: Specific Protocols

WORLDWIDE ENVIRONMENTAL PRODUCTS, INC.

2.34 Inspection Sticker Printer

2.35 Sticker Printer General Usage

2.36 Opening Top Cover

2.37 Loading Stickers

Loading Stickers (Print Media) – Installing Media on Holders

Loading Stickers (Print Media) – Adjusting Guides

media strip in place while closing the top cover.

Calibrate Sensor

STICKER PRINTER **Calibrate Sensor**

Calibration is

accomplished by

activating the

Gap/Black Mark sensor

calibration function

through the Power On

Utilities.

After changing label stock, the Gap (also identified as the Black Mark) sensor should be calibrated, according to the printer manufacturer's recommendations.

WORLDWIDE ENVIRONMENTAL PRODUCTS, INC.

> Starting with the printer turned Off, press the Media Feed button down and hold while turning On the printer. Continue holding the Feed button until the multi-colored LED (located above the Feed button) begins to flash amber. Note that the LED will first

be red when the power switch is turned on, then the LED will turn green for a moment, then red once more, indicating the Power On Utility has been activated. The LED will next flash red 5 times. Continue holding down the Feed button.

LED color Functions		Autor	Rist O Series)	Aintas (5 tieks)	these Gammer	Constructional and a construction of the second sec	(Starie)	Sold grown	the LED will be green, indicating
1. Albhon Sensor C	allbration and Gap / r calibration		Protected						the printer is ready for use.
2. K mark Self-test and ente	sensor calibration, r dump mode			Roban					

Following the 5 red flashes, the LED will begin to flash amber. **Release the Feed button WHILE** the LED is flashing amber and the sensor calibration, self-test and data dump mode will be activated and completed. Upon completion,

Multi-

colored

LED

Media

Feed

Button

2.38 Loading Ribbon

Removing Used Ribbon and Spool

STICKER PRINTER Removing Used Ribbon and Spool

The old printer ribbon spool will be needed to collect the used ribbon from the new roll.

Disengage the used ribbon spool and remove.

Open the ribbon access cover to gain access to the used ribbon roll.

Open the top cover fully to engage the top cover support. **Remove old spool**

Push the used roll to the right, against the springloaded rewind hub.

right and fully removing spool from supply hub.

STICKER PRINTER Installing Empty Spool

STICKER PRINTER

Take the empty spool removed in the previous step and install onto the ribbon rewind hub by pushing the spool against the hub spring and then positioning the spool onto the left hub.

Note the slots in the empty spool must align with the hub splines.

Install the new printer ribbon roll onto the right supply hub, paying attention to align the slots in the spool with the hub splines, and then mount the spool on to the left hub with spool slots aligned with hub splines.

the new ribbon leader and

attach to the empty rewind

0

Close the ribbon access cover and the top cover.

Turn the printer On and the LED should be green, indicating the printer is ready for use.

2.39 Brother Laser Printer

WORLDWIDE ENVIRONMENTA PRODUCTS, INC

2.40 VIR Printer Normal Use and Maintenance

2.41 Control Panel Navigation

2.42 Toner Life

2.43 Drum Life

2.44 Removing Toner/Drum Assembly

2.45 Separating Toner Cartridge from Drum Unit

2.46 Installing New Toner Cartridge

2.47 Replacing Drum and Counter Reset

2.48 GVIP Hardware Part # and Name List

Part #:	Name:	
792-1000	Rugged Tablet PC w/Barcode scanner	
792-1000B	Battery, Rugged Tablet PC w/ Barcode Scanner	
792-1000C	Charger, Rugged Table PC w/ Barcode Scanner	
792-1000D	Docking Station, Rugged Table PC w/ Barcode Scanner	
290-9055	WI Enhanced WEP OBDII, DAD	
180-244CE	TSC TTP 244 CE Printer	
790-6055	Roll, Thermal Transfer Label	
790-6065	Thermal Transfer, Ribbon 76mm X 110m	
180-2340	Printer, Brother HL-2340	
180-2341	Toner Cartridge, Printer, Brother HL-2340	
180-2342	Drum, Printer, Brother HL-2340	
400-2011K	Standalone, ECU Simulator w/cables and power adapter	
510-1528	Cat 5 Network Cable	
510-1566	Wireless, Nano Router	
160-0108	Mini Keyboard	
160-0200	USB, Portable wall charger	
510-1020	Cable, USB/Printer 6'	
512-1091	Cable, DAD DB9 Female to DLCM	
354-0950	Workstation Cabinet w/wheels	

3. Air Pollution Problems, Causes, and Effects

3.1 VEHICLE EMISSIONS: AIR POLLUTION PROBLEMS, CAUSES & EFFECTS

3.2 MO Air Pollution Introduction

Ozone: Health and Environmental Concerns

VEHICLE EMISSIONS: AIR POLLUTION PROBLEMS, CAUSES & EFFECTS **Ozone: Health and Environmental Concerns**

In the upper atmosphere (stratosphere), ozone acts as a UltraViolet (UV) radiation filter and helps reduce the amount of harmful UV radiation that reaches the earth. At ground levels, however, ozone is a serious health problem, particularly for children, the elderly, and people of all ages who have lung diseases such as asthma.

Breathing ozone can trigger a variety of health problems including chest pain, coughing, throat irritation, and airway inflammation. It also can reduce lung function and harm lung tissue, including permanent scaring. Ozone can worsen bronchitis, emphysema, and asthma, leading to increased medical care.

Learn more about ozone here: EPA - Ozone Pollution

Ground-level ozone also damages vegetation and ecosystems. It leads to reduced agricultural crop and commercial forest yields, reduced growth and survivability of tree seedlings, and increased susceptibility to diseases, pests and other stresses such as harsh weather. In the United States alone, ground-level ozone is responsible for an estimated \$500 million in reduced crop production each year. Ground-level ozone also damages the foliage of trees and other plants, affecting the landscape of cities, national parks and forests, and recreation areas.

Air Pollution Camera

Ozone Monitoring

VEHICLE EMISSIONS: AIR POLLUTION PROBLEMS, CAUSES & EFFECTS **Ozone Monitoring** Typically, ozone pollution is a problem in the St. Louis area in the hot summer months (from late May to early

September) when higher temperatures cause the chemical reaction to take place. Ozone levels tend to rise in midmorning, several hours after the rush-hour and onset of emissions-generating business operations and peak in the late afternoon. 30 exceedances were reported during the 2016 ozone season. **Poor Visibility Good Visibility Ozone Monitoring Data** Ozone 0.101 PPM Particulate 32 µg/m' Link to the St. Louis Visua

Link to Missouri Skies Now and Then

3.5 Ozone Formation

VEHICLE EMISSIONS: AIR POLLUTION PROBLEMS, CAUSES & EFFECTS **Ozone Formation**

Ground level ozone is not emitted directly by an internal combustion engine, but is formed through complex chemical reactions, using the sun's UV radiation energy to power these processes. Along with UV radiation, oxides of nitrogen (NOx) and volatile organic compounds (VOCs - which include hydrocarbons and are sometimes also referred to as Reactive Organic Gases or ROG) play a key role in the formation of ground-level ozone, photochemical smog and small particulates.

Ozone, photochemical smog and small particulates formed from vehicle exhaust are all dangerous to our health and environment.

The MO GVIP program is an important part of the State Implementation Plan (SIP) that helps reduce the formation of these harmful pollutants.

VOCs (volatile organic compounds) include hydrocarbons in gasoline and diesel fuels

3.6 CO

VEHICLE EMISSIONS: AIR POLLUTION PROBLEMS, CAUSES & EFFECTS Carbon Monoxide (CO)

Carbon Monoxide (CO) is a colorless, odorless gas resulting from the incomplete combustion of hydrocarbon fuels.

Incomplete combustion occurs when there is not enough oxygen present during the combustion process and as a result, some CO is formed instead of the desired carbon dioxide (CO2).

During combustion, the hydrogen and carbon atoms split apart and recombine with oxygen. Hydrogen will use whatever oxygen is necessary to form water (H2O) and then whatever oxygen is left will combine with the carbon atoms. Ideally, a carbon atom will bond with 2 oxygen atoms to form CO2, but if there is not enough oxygen,

(incomplete combustion) CO molecules will form.

The air to fuel ratio (A:F) is very important for complete combustion to occur in gasoline and other spark-ignition engines. The fuel must also be well mixed with the air in the combustion chamber in order for complete combustion to occur. If the A:F is too rich, or the fuel is not well vaporized and properly distributed throughout the combustion chamber along with the needed oxygen, the combustion process will be adversely affected and CO emissions will increase.

Click here for more information on CO formation and the chemistry of hydrocarbon combustion

Page | 38

WORLDWIDE ENVIRONMENTAL PRODUCTS, INC.

VEHICLE EMISSIONS: AIR POLLUTION PROBLEMS, CAUSES & EFFECTS CO: Health and Environmental Concerns

CO is an odorless, colorless gas that is very harmful, even in low concentrations. CO can cause harmful health effects by reducing oxygen delivery to the body's organs (like the heart and brain) and tissues. At extremely high levels, CO can cause death.

Exposure to CO can reduce the oxygen-carrying capacity of the blood. People with several types of heart disease already have a reduced capacity for pumping oxygenated blood to the heart, which can cause them to experience myocardial ischemia (reduced oxygen to the heart), often accompanied by chest pain (angina), when exercising or under increased stress. For these people, short-term CO exposure further affects their body's already compromised ability to respond to the increased oxygen demands of exercise or exertion.

Click here to open the EPA's CO web page

Click here for more information on CO formation and the chemistry of hydrocarbon combustion

3.8 Summary-Air Pollution Problems

VEHICLE EMISSIONS: AIR POLLUTION PROBLEMS, CAUSES & EFFECTS Summary

- The GVIP is necessary in order to help the St. Louis area combat the growing problems of ground-level ozone that is a result of VOCs and NOx emissions from mobile sources.
- Ozone is harmful to our health and environment and continuous effort must be made in order to continue the downward trend of ground-level ozone concentration.
- CO is a poison the directly reduces the oxygen-carrying capacity of our blood stream. In short-term, high concentration exposure conditions, CO can cause death. In long-term, low concentration exposure conditions, CO can cause brain and other internal organ damage.

Notes:

4. Inspection Program Purpose, Function and Goals

4.1 Introduction to the Emissions Inspection Program

4.3 Summary

INSPECTION PROGRAM PURPOSE, FUNCTION, & GOALS Summary

- The GVIP plays an important role in helping meet emissions reductions by identifying vehicles that have malfunctions which may cause an increase in tail-pipe or evaporative emissions,
- The GVIP has built-in features that help ensure vehicles are repaired properly before the vehicle is able to pass a re-test,
- The GVIP helps to ensure vehicles are tested using the best technology, and the inspector workforce has the latest and best information to ensure proper decisions are made and accurate information is shared with the driving public.

5. Inspection Regulations and Procedures

5.1 Introduction to the Inspection Regulations

5.2 Emissions Inspection Periods

5.3 Emissions Inspection Fees

5.4 Emissions Inspection Oversight Fees

EMISSIONS INSPECTION REGULATIONS & PROCEDURES: Emissions Inspection Oversight Fee

Licensed emissions inspection stations shall pre-pay the state two dollars and fifty cents (\$2.50) for each passing emissions inspection that they intend to perform. The fee is paid to the Director of Revenue and submitted to the Missouri State Highway Patrol (MSHP). Using the VID, the MSHP will credit the number of pre-paid emissions inspections to the licensed emissions inspection station's GVIP analyzer. The GVIP analyzer system will deduct 1 emissions credit authorization for each passing emissions inspection.

5.5 Emissions Inspector Requirements (1-3)

EMISSIONS INSPECTION REGULATIONS & PROCEDURES: Emissions Inspector Requirements

Emissions Inspector Requirements:

- Every person requesting a vehicle emissions inspector license shall submit a completed vehicle emissions inspector application to the Missouri State Highway Patrol – Motor Vehicle Inspection Division. The emissions inspector application shall include a facial photograph with dimensions of two inches (2") in length and two inches (2") in width.
- All vehicle emissions inspectors must be at least eighteen (18) years of age and able to read and understand documents written in English. The emissions inspector written exam may include an oral component to evaluate the applicant's ability to read and understand documents written in English.
- Emissions inspectors must pass a written test that demonstrates their knowledge of the fundamentals of emissions testing and the procedures of the emissions inspection program. A minimum grade of eighty percent (80%) is required to pass the written examination or reexamination.
- Emissions inspectors must be thoroughly familiar with the emissions inspection equipment and demonstrate competency to either the department or the MSHP while performing an emissions inspection on a vehicle prior to the issuance of the inspector's license. A minimum grade of eighty percent (80%) is required to pass the practical examination or reexamination.

		in Se	a Growth	
			**** A 500 mile 1	
	Terrer	,E		TT
-	-	and the second	eset.	5.00
No.		-	1.000	111
•	in the second	- 224		1.77
- 644	21.75	a [].	1.1.	- 241.9

5.6 Emissions Inspector Requirements (4-6)

EMISSIONS INSPECTION REGULATIONS & PROCEDURES: Emissions Inspector Requirements

Emissions Inspector Requirements:

- If the applicant meets the applicable requirements, an emissions inspector license will be issued without charge. Licenses are valid for a period of three (3) years from the date of issuance, or until suspended or revoked by the department or the MSHP. An emissions inspector whose license has been suspended or revoked shall be required to successfully complete a recertification training program and pass the written and practical exams.
- If the emissions inspector leaves the employment of one licensed emissions inspection station and enters the employment of another licensed emissions inspection station, the emissions inspection station manager of the station that the inspector is transferring to shall complete an amendment form to inform DNR and MSHP of the personnel changes. The emissions inspector's license is transferable with the licensed emissions inspector, provided the emissions inspector's license has not expired.

MOTOR V	ANDINGHER ENICLE INSPECTION	IT TO STATION APPL	station .
и 1		1.4	la manada
		14	
0	-		
			F F
<u>୍</u>			

Page | 45

5.7 Emissions Inspector Requirements (7-8)

EMISSIONS INSPECTION REGULATIONS & PROCEDURES: Emissions Inspector Requirements

Emissions Inspector Requirements:

- An emissions inspector may be reexamined at any time, and if s/he fails the reexamination or refuses to be reexamined, the license issued to him/her shall be suspended. If a vehicle emissions inspector fails a reexamination, s/he cannot again be tested until a period of thirty (30) days has elapsed.
- An emissions inspector license may be renewed before the expiration date or within sixty (60) days after expiration without a reexamination. If the license has expired more than sixty (60) days before the license renewal application is submitted, a repeat of classroom training session and reexamination and the hands-on practical exam will be required. A vehicle emissions inspector does not have authority to conduct any inspections during the sixty (60)-day post-expiration grace period unless the license has been properly renewed.

5.8 Emissions Inspection Procedures

EMISSIONS INSPECTION REGULATIONS & PROCEDURES: Emissions Inspection Procedures

The emissions inspector is responsible to ensure that every emissions inspection is performed according to the procedures described in Title 10 of Missouri's code of state regulations (CSR) 10-5.381.

Once an emissions inspection has begun, it shall be completed and shall not be terminated. A vehicle may not be passed or failed based upon a partial inspection.

A proper and complete emissions inspection consists of entering the information requested, testing the vehicle in the condition presented, conducting the emissions test as detailed in this training program and the state regulations, and ensuring the test record information is uploaded.

As soon as an inspection is complete, the emissions of inspection record is transmitted to the VID for the purpose of real time registration verification by the MDOR and program oversight by MDNR and MSHP.

10 CSR 10-5.381 On-Board Diagnostics Motor Vehicle Emissions Inspection

PURPOSE: This rule enacts the provisions of 643,300-643,355, RSMo, and meets the 1990 Federal Clean Air Act Amendments requirement that the copen state implementation plan contains necessary enforceable measures to maintain the mandatory vehicle emissions inspection and maintenance program. The purpose of the inspection and mance program is to reduce vehicle or an an an an an an an antainment area.

The emissions analyzer must be connected to the shop's data network with access to the vehicle information i database (VID) at all times.

EMISSIONS INSPECTION REGULATIONS & PROCEDURES: Emissions Inspection Procedures: Special Notes

Vehicles shall be inspected in as received condition including vehicles whose malfunction indicator lamp (MIL) is illuminated while the engine is running, or whose readiness monitors are unset.

The inspector shall connect the OBD DAD to the data link connector (DLC) of the actual vehicle submitted for emissions testing. The connection shall remain intact and functioning during the entire test procedure. Clean scanning as defined in 10 CSR 10-6.020 is prohibited and may result in jail time.

An official inspection, once initiated, should be performed in its entirety regardless of immediate outcome, except in the case of an invalid test condition or determination by the emissions inspector.

The initial emissions inspection shall be performed according to the test method described in this training program and the Code of State Regulations, without repair or adjustment at the emission inspection station prior to conducting the vehicle inspection.

Inspecting Vehicles As Received

5.10 Beginning an Official Inspection

5.11 Inspection Menu

Page | 48

5.12 Inspector Logon

5.13 Inspector Logon via Fingerprint

5.14 Inspector Logon Not Valid

	GVIP V	ehicle Inspection	V
		100 0	
If a fingerprint is r to try the fingerpri to th	ot recognize nt again. Re e attention o	d, a message will be displayed with a prom peated recognition issues need to be broug f either DNR or Highway Patrol.	npt ght

5.15 VIN Entry

VIN Entry-Offline Testing

5.16 Vehicle Information Entry

5.17 Information Confirmation

5.18 Previous Test Information

WORLDWIDE ENVIRONMENTAL PRODUCTS, INC.

5.20 Taking Required Photos

5.21 Non-Functional Camera

5.22 MIL Visual Inspection - KOEO

5.23 MIL Visual Inspection - KOER

GVIP Vehicle Inspe Bulb Check Test	ection	Gateway	GVL: Vehicle Inspection Program
6/19/2017 1.19:38 PM Station: CC02 Unit: MOTRJ Offline Tests: 0 Inspector: BRI002200 - CHUCK GEE	APRING1 Version: 3.8.0.0 Network: Status: No Lockowts	Internet Access Emissions Auths 100 Next	Safety Auths Battery 10 Cancel
With the engine OFF, turn the k Does the MIL illuminate?	ey to the ON position.		
Start the Engine and let idle. Does the MIL illuminate?			
	^O Yes ^O No		
After performing the visual bu illuminate during KOEO, the ir the next steps of the test. Thi	Ib check and indicatin spector is prompted to s operating condition	ng whether the M o start and idle th is referred to as h	IL did or did not ne engine during (OER, or Key On

5.24 MIL Visual Inspection - Complete

EMISSIONS INSPEC	CTION RI al Inspe	GULATIO	NS & PROCED O & KOER	OURES:
GVIP Vehicle Inspe Bulb Check Test	ection	2	Gateway Ver	SVPP licle Inspection Program
6/19/2017 3.25.06 PM Station: CC02 Unit: MOTRAI Offline Tests: 0 Inspector: BRI002200 - CHUCK GEE	NaNG1 Version: Status	3.8.0.0 Network: Int No Lockowts	ternet Access Emissions Auths Sa 100 Next	10 Battery Cancel
With the engine OFF, turn the ke	ey to the O	N position.	89 C	
Does the MIL illuminate?		en Personali		
	• Yes	O No		
Start the Engine and let idle.				
Does the MIL illuminate?				
	^O Yes	[®] No	After indication the KOER MIL the Next butt	ng Yes or No at prompt, select on to proceed.

5.25 Connect DAD to Vehicle DLC

5.26 Vehicle Communications

5.27 OBD Test Results Summary

EMISSIONS	INSPECTION OBD	REGULATIONS & PROCEDURES: Test Results				
GVIP Vehicle Insp Test Results	ection					
N 2017 5 22 54 Mil Bankov (CO) Univ. NOTA Bina Radii & Bagaritar (MBBB2200 - CNUC) 648	AMMALT Version: 13.5.5 Renaution Scalar @ No Lachards	Indexet Access Transmiss Addis Safety Autors				
Data Link Connector (DLC):	Pass					
OBD Communication:	Pass	Once the necessary vehicle data has been				
MIL:	Pass	received, a Test Results screen will be				
KOEO:	Pass	displayed.				
KOER:	Pass	All of the OBD data necessary for test				
MIL Command Status: OFF		Pass/Fail determination will be listed				
DIC Count:	0	rassran decentination will be listed.				
Readiness:	Pass	This information, along with other				
Catalytic Converter	Not Completed	important test results information is				
Evap System:	Completed	included on the vehicle inspection report				
Secondary Air:	Unsupported	and a service inspection report				
O2 Sensor:	Completed	(VIR).				
O2 Sensor Heater:	Completed					
EGR System:	Unsupported					

5.28 VIR

EMISSIONS INSPECTION REGULATIONS & PROCEDURES: Vehicle Inspection Report (VIR) MISSOURI 4 200 Circlente EMISSIONS Inspection 2 1 operator. ANT Inspection station information, inspection ally in the St much begins

magenties Rame followaging		
Data Tree & State of State and	Intel Transa A and	DOT Name # 1558
Solice Name Wolfdame."		COP Roduce 4 MUTREMAN
And in Addition, 137 Mar. Royald Law	a Kapping Salis	Silvers Income LALA
have by have a	Water, Ta Town Mell?	Split's Separation A 2
hand the later of the later	NAMES A BRIDE	Environme Auggestion: # 1
		a loaned of hours
Name North FAMILAR TAXABLE	Carse Day Received.	Parce Splices and
Datest Mathem. 131 19 (2.2 1911) 1 44	a	Game Lowly, Got of Base
Inford mining of Freed & port Frank	the factor parts I proved by effectively a local	tel d horne
of the second second	51a- 2013	Antick Tase Trailing
PA STORAGE AND	1948 TUNE	Kat Talk Dealths
Whence Belline	WHAT SAVED	Cirlah hange: 5 ditte ba
Committee, Marcal	Digitation a	Columnar with 10
coance Plate & Techell	Ante Regentation Depine:	Report Loans the disease
Emissions Inspection Result	Pass	Profacal comment
Michael Par-	NO. SCHOL Page 145 allow P	an Mr. Concurd Robert Fee
NaturDis Consolity (NU) Pass	(h) far hanni	mining hi
anti-Constantiation: Plan	nete for Rest	terner, b
		Ann Location 171 Reported The
Romming Read, Parci	# of the Langehood Represent 7	Proc Trap 211, Reported 198
Schemer Gregories	count inners the Congested	ANTINE LAND

A VIR will be printed at the conclusion of each test and is to be given to the vehicle

date and time, analyzer and inspector information is automatically included on the VIR.

Entered vehicle information is also included. The method of VIN entry is identified, whether by scanning a bar code or through manual keyboard entry. OBD data that determines emissions test Pass/Fail status is also detailed on the VIR.

Emissions	Inspection Result	Pass			Prot	ocol: ICA	N11BT	
MIL Result: Pass		MIL KOEO: Pass MIL KOER: Pass			s MIL Command Status: Pass			
Data Link Connector (DLC): Pass		DLC Fail Reason:				DLC Voltage: 12		
OBD Communication: Pass		Comm. Fail Reason:				RPM: 0		
						Prior Conve	rter DTC Reported: No	
Readiness Result: Pass		# of Not Completed Monitors: 1				Prior Evap DTC Reported: No		
O2 Sensor:	Completed	Catalytic Converter	Catalytic Converter Not Completed			EGR System:	Unsupported	
O2 Sensor Heater:	Completed	Secondary Air: Unsupported				Evap System:	Completed	
Diagnostic Tro	uble Code (DTC) Result	Pass Countral Ditos 0		Count of Permanent DTCs: 0				

5.29 VIR-Passing Inspection

5.30 VIR: Vehicle DLC, Communications Requirements and Results

Communication Protocols

Communication Protocols For Emissions Data

For 1996 and newer model year (MY) vehicles, emissions related data transmission and other diagnostic functions are all standardized. As part of new vehicle OBD certification, vehicle manufacturers are required to use certain communication protocols (data transmission languages). Since 1996, there have been 7* different protocols that have been considered OBD compliant:

- SAE J1850VPW (Society of Automotive Engineers J1850 Variable Pulse Width)
- SAE J1850PWM (Society of Automotive Engineers J1850 Pulse Width Modulation)
- ISO 9141 (International Standards Organization)
- ISO 14230 or KWP2000 (Keyword Protocol 2000)
 - o Fast Initialization
 - o 5-baud Wakeup
- ISO 11898 CAN 11-bit (Controller Area Network 11-bit header)
- ISO 11898 CAN 29-bit (Controller Area Network 29-bit header)

2008 MY and newer vehicles are required to use one or the other version of the CAN protocol. Vehicle manufacturers started phasing the CAN system in as early as 2003 MY. As the CAN system was being phased in, the older SAE and ISO protocols were being phased out.

* The number 7 is based on the different numbers of ISO and SAE standards, and variations within some of the standards.

Data Link Connector

5.31 VIR-Monitors and Readiness Codes

Readiness Requirements

5.32 VIR-Failure

5.33 VIR: MRRT

EMISSIONS INSPECTION REGULATIONS & PROCEDURES: VIR: Missouri Recognized Repair Technician List

A failing emissions test VIR will include a list of the ten (10) nearest repair facilities employing a Missouri Recognized Repair Technicians (MRRTs) to the licensed emissions inspection station that the failed test occurred at. This list is printed below the emissions details section of the VIR. A repair data sheet that is used to collect emissions repair data for the repair facility performance report will also be printed and given to the motorist, after development and approval.

The repair data sheet will be printed by the test equipment for each failing vehicle and provided by the inspection station to the motorist. The information on repair data sheets will be collected and entered by emissions inspectors into the emissions test equipment.

The information to be collected shall include, but not be limited to, the following: 1. The total cost of repairs, divided into parts and labor;

2. The name of the repair facility and, if applicable, the repair business's inspection station number and/or the MRRT facility's identification number; and

3. The inspection failure the vehicle was being repaired for and the emissionsrelated repairs performed.

The repair data and resulting emissions test outcome will be used to develop a Repair Effectiveness Index (REI) for any repair shop choosing to participate.

TBD in software

5.34 Emissions Inspection Procedures

5.35 Emissions ReInspection Procedures

5.36 Exemptions and Waivers

EMISSIONS INSPECTION REGULATIONS & PROCEDURES:

Vehicle Exemptions And Waivers

- Vehicles that are exempt from emissions testing include:
- Vehicles above 8,500 GVWR and older than the listed model years are not subject to emissions testing;
- · Motorcycles and motortricycles;
- Vehicles powered exclusively by electric or hydrogen power or by fuels other than gasoline, ethanol (E10 and E85), or diesel;
- Historic motor vehicles;
- School buses;
- Tactical military vehicles;
- Specially constructed vehicles;
- Plug-in hybrid electric vehicles (PHEVs).
- Specific exemptions exist for the following:
- · New and unused motor vehicles;
- · Vehicles that qualify for mileage-based exemptions;
- · Out-of-area exempted vehicles.

- Other special circumstances may involve the vehicle owner working with the DNR and obtaining a:
- Cost-based repair waiver;
 Estimate based repair waiver;
- Out-of-area waiver;
- · Reciprocity waiver.
- Refer to the applicable sections of the CSR for more information.

6. Test Procedure Details and Design Rationale

6.1 Intro Test Details

The OBD test p nearly every ve functionality o obtained to	rocedure has been designe hicle manufacturer in orde f each step and the necess o provide accurate emission	d with input from or to ensure proper ary information is no test results.	
missions Inspection Percu	Pass Pass	tocol: ICANTIET	
A Bacalt Dain	A FUSS Part AN FOR Part	All Command Status - Date	- Company - I - and
ata Link Connector (DLC): Pasa	The first Party of the South Party	DLC Voltage: 12	- · ·
80 Communication: Pass	Come Fail Ramon	RPM 0	
and a second second second second	1	Prior Converter DTC Reported: No	
eadiness Result: Pass	# of Not Completed Monitors: 1	Prior Evap DTC Reported: No	
2 Sensor Completed	Caretric Canverar Not Completed	EGR System: Unsupported	Q
area here Completed	Secondary Air: Unsupported	Evap System: Completed	
agnostic Trouble Code (DTC) Resul	It Pass Annualitie 0 Court	t of Permanent DTDs 0	
The vehicle's On emissions contro are functionin gather infor information	Board Diagnostic (OBD) syn ol systems and making the g properly and are fault-fre mation from the vehicle's (n, determines if the vehicle	stem is actually do determination wh e. The GVIP test eq OBD system and ba should Pass or Fail	ing the evaluation of the ether or not the system uipment is designed to sed on the retrieved the emissions test.

Notes:

According to 10 CSR 10-5.381 (which is commonly referred to as "this rule") (5) (B):The OBD test shall follow the procedures described in 40 CFR 85.2222, which is incorporated by reference in this rule, as published by the EPA, Office of Transportation and Air Quality, 2000 Traverwood, Ann Arbor, MI 48105 on April 5, 2001. This rule does not incorporate any subsequent amendments or additions to 40 CFR 85.2222.

1. If the subject vehicle cannot be tested with the OBD test due to manufacturer design, then the subject vehicle shall be tested with only a bulb check test described in paragraph (5)(B)2. of this rule.

2. Bulb check test.

A. Vehicles will fail the bulb check portion of the OBD test if the MIL is not illuminated while the key is in the on position and the engine is off (KOEO).

B. Vehicles will fail the bulb check portion of the OBD test if the MIL is illuminated while the key is in the on position and the engine is running (KOER).

C. Vehicles with keyless ignitions shall be subject to a bulb check test.

D. Vehicles that fail the KOEO bulb check portion of the OBD test described in subparagraph (5)(B)2.A. of this rule shall fail the OBD test. Repairs made to correct bulb check failures shall not be eligible for cost-based or estimate-based waivers.

6.2 MIL Visual Inspection

6.3 MIL Appearance/Operation

Notes:

There are other indicators such as "Service Vehicle Soon" that may be easily confused with the emissions MIL. The inspector must be careful when completing the visual inspection process.

6.4 MIL-KOEO

6.5 MIL-KOEO_NOTES

Page | 66

Test Procedure Details and Design Rational MIL Visual Inspection Notes: Short ON Time

If the inspector is unfamiliar with the exact location of the MIL, it is possible to miss the initial MIL bulb check during KOEO. If the inspector feels the bulb check was missed, the ignition should be turned OFF for at least 12 seconds and then back to KOEO in order to initiate the MIL bulb check again. This repeat of the bulb check does not disrupt the test sequence. Once MIL operation during the bulb check has been properly verified, the inspector should continue with the vehicle test by selecting the appropriate response on the inspection tablet screen.

WORLDWIDE ENVIRONMENTAL PRODUCTS, INC.

Flashing MIL KOEO-Readiness

Test Procedure Details and Design Rational MIL Visual Inspection Notes: Flashing During KOEO

Beginning with the 2001 model year, some vehicle manufacturers use the MIL to indicate whether or not all Readiness Indicators are set to "Completed".

MIL operation during KOEO is as follows:

- KOEO operating state is initiated; MIL comes on steady.
- After 20 seconds in this state the MIL will do one of two things:

 Cycle on and off to indicate that one or more Readiness Indicators are "Not Completed". Depending on manufacturer,

the amount of time the MIL flashes varies from five to ten seconds.

 Remain on steady or extinguish (varies with manufacturer) for the duration of the KOEO period to indicate all Readiness Indicators are "Completed".

6.6 MIL-KOEO_NOTES pg2

TEST PROCEDURE DETAILS & DESIGN RATIONAL KOEO MIL Visual Inspection Notes

Vehicles with keyless ignitions are subject to the visual MIL inspection during KOEO. Be aware that keyless ignition systems have been around since model year 2002. In order to properly conduct the KOEO visual inspection, inspectors are required to follow proper procedures to initiate the KOEO operating condition.

For most keyless ignition system vehicles, initiating the KOEO operating condition requires the remote control being in the vehicle or inserted into the dash slot. With the engine off, press the "START-STOP" button once without depressing the brake pedal. To start the engine for KOER, depress the brake pedal and press the "START-STOP" button a second time.

-	MIN	0W	PRAME	ans.	KW.*	(marca	TRANS	PLEITHE	NEVERSE KANTON "KOED" and "KOER" TEST PROCEDURES
2004	Burthey	Barrito y	Continential GT	1	12	5		٢	To whete a MD, bell check, 1. Dozen the render statetis is the parameter compartment. 3. The region is reveal, this 3 by persing the "START STOP" before the lower centre consist central panel. 3. Thes, where it suchars the take persing the "START STOP" before space. This is the "accessive unit before "rend" the ML, and other sering them pages on the instrument formary function taket.
					-				

estimate-based waivers.

6.7 MIL-KOER

Page | 68

Test Procedure Details and Design Rational OBD I/M Testing: Flashing MIL During KOER

Under certain circumstances, the MIL may flash during KOER. If the MIL is flashing during KOER, the inspector should indicate that the MIL is illuminated.

If the MIL is flashing during KOER, a catalyst damaging misfire has been detected by the OBD system and is indicated by flashing the MIL while the engine is running.

WORLDWIDE ENVIRONMENTA RODUCTS INC

> The vehicle operator should be encouraged to get the vehicle repaired as soon as possible in order to avoid permanent damage to the catalytic converter.

When an engine misfire occurs, engine out HCs increase. When excess HCs pass into the catalytic converter(s), internal temperatures increase due to the excess heat energy that is released as the HCs are combusted and converted into H₂O and CO₂.

6.8 DLC Details

The Data Link Connector (DLC) provides both the physical and electrical connections necessary for data communications to occur between the vehicle's OBD system and an off-board computer system.

All 1996 and newer light-duty vehicles with spark-ignition engines and all 1997 and newer light-duty vehicles with compression-ignition engines have the required DLC.

If a DLC is located behind a panel or cover, be cautious when removing the panel or cover.

The shape, size, and 8 of the 16 cavities have been standardized in order to improve connection and communication efficiency between on-board and off-board computer systems such as the GVIP test equipment.

SAE J1962 is the Recommended Practice relating to the DLC. Click here to link to a full copy of the SAE standard.

6.9 DLC Location

6.10 DLC Connections

6.11 Tampered or Damaged DLC

6.12 MIL Command

Notes:

For 2005 MY and subsequent vehicles, during KOEO MIL COMMAND will be "OFF" unless a confirmed failure exists.

6.13 Initiate OBD Communications

Notes:

For 2005 MY and subsequent vehicles, during KOEO MIL COMMAND will be "OFF" unless a confirmed failure exists.

6.14 Monitor Readiness

6.15 VIR and Readiness Codes

	Emissions Inspection Result:		Pass Pi			Protocol: ICAN11BT		
MIL Result: Pass		MIL KOEO: Pass MIL KOER: P.			MIL Co	MIL Command Status:		
Data Link Connector (DLC): Pass		DLC Fail Reason:	DLC Vo	DLC Voltage: 12				
OBD Communication: Pass		Comm. Fail Reason:	N/A		RPM: 963			
					Prior Converter DTG	Reported:	No	
Readiness Result:	Pass	# of Not Completed N	Aonitors:	0	Prior Evap DTC Rep	orted:	No	
O2 Sensor:	Completed	Catalytic Converter:	Completed		EGR System:	Unsupporte	bd	
O2 Sensor Heater:	Completed	Secondary Air:	Unsupported		Evap System:	Completed		
Diagnostic Trouble	Code (DTC) Resul	t: Pass Coun	t of DTCs: 0		Count of Permanent DTCs:		0	
indicator. If	ie Readines	s indicator sho	") or bas no	t v	et accomplis	e related s	ystem	

standards, or the system is functional and fault-free.

Readiness Indicators do not indicate Pass/Fail status of the emissions control systems.

6.16 VIR-Monitors and Readiness Codes

Monitor Unsupported But Emission Control System Present On Vehicle

Monitor Unsupported But Emission Control System Present On Vehicle

There are instances where an engine may have an EGR system present on the engine but the OBD system shows the EGR monitor as Unsupported, or the EGR monitor is supported but there is no external EGR system on the engine. The reasons these combinations may be present include:

- The EGR system being used as a fuel economy system but does not cause emissions to exceed applicable standards if a malfunction is present,
- The engine uses a Variable Valve Timing (VVT) system to accomplish exhaust gas recirculation (internal EGR) and does not need an external EGR system.

There are engines manufactured by GM and Land Rover that were originally certified with AIR systems, but later were re-certified without AIR. With the new certification, the engine computer can be reprogrammed and the AIR system is rendered non-functional. With the AIR non-functional, the AIR monitor is turned off and the AIR Readiness Code displays Unsupported. In this case, the inspector would indicate that the AIR appears to be present, but the OBD system will show the AIR system as not supported.

6.17 Monitors and Readiness Code Requirements

WORLDWIDE ENVIRONMENTAL PRODUCTS, INC.

		THE REAL TOP THE			The continue of the	
Data Link Connector	(DLC): Pass	DLC Fail Reason:			DLC Voltage:	12
OBD Communication	Pass	Comm. Fail Reason: N/	A		RPM: 963	
				Prior Conve	erter DTC Reported:	No
Readiness Result:	Pass	# of Not Completed Moni	tors: 1	Prior Evap I	DTC Reported:	No
Exhaust Gas Sen 🤺	Completed	NMHC Catalyst Co	mpleted 7	SGR/VVT S	ystem: Complete	d
PM Filter	Not Completed	Boost Pressure Co	mpleter	NOX/SCR	Complete	d
Diagnostic Trouble C	ode (DTC) Result	Pase Count of	DTC. 0	Count	of Permanent DTCs:	0
1997 - 2009 vehicles may	model year pass the Re	diesel-powered	2010 and i vehicles m	newer m nay pass	odel year diese the Readiness	-powered

Completed Monitor.

If a vehicle reports 6 supported monitors, 1 monitor is allowed to be set to Not Ready.

Completed.

6.18 CAT/O2 Monitor Requirement

Monitor Unsupported But Emission Control System Present On Vehicle

Test Procedure Details and Design Rational Monitor Unsupported But Emission Control System Present On Vehicle

There are instances where an engine may have an EGR system present on the engine but the OBD system shows the EGR monitor as Unsupported, or the EGR monitor is supported but there is no external EGR system on the engine. The reasons these combinations may be present include:

- The EGR system being used as a fuel economy system but does not cause emissions to exceed applicable standards if a malfunction is present,
- The engine uses a Variable Valve Timing (VVT) system to accomplish exhaust gas
 recirculation (internal EGR) and does not need an external EGR system.

There are engines manufactured by GM and Land Rover that were originally certified with AIR systems, but later were re-certified without AIR. With the new certification, the engine computer can be reprogrammed and the AIR system is rendered non-functional. With the AIR non-functional, the AIR monitor is turned off and the AIR Readiness Indicator displays Unsupported. In this case, the inspector would indicate that the AIR appears to be present, but the OBD system will show the AIR system as not supported.

6.19 Readiness Code Information for Drivers

WORLDWIDE ENVIRONMENTAL RODUCTS, INC.

Temperature Requirements for Cold Start-up

Most vehicle manufacturers do not use a fuel temperature sensor to measure fuel temperature directly, so in order to determine fuel temperature, the engine coolant and ambient air temperatures are used. When the engine and ambient air temperatures are within 10° F of each other, fuel temperature is calculated to be at the same temperature as well.

Fuel temperature information is needed by the Evaporative Emissions Control System monitor in order to calculate expected (predetermined) fuel vapor pressure changes based on operating conditions. Predetermined fuel vapor pressures are compared to actual fuel vapor pressures to identify the presence of leaks in the vapor and liquid fuel storage system.

Parking a vehicle outside for many hours in order to allow the engine temperature to equalize to ambient air will typically satisfy the start-up temperature requirements, however, be aware that if the vehicle has been parked outside over night and is started during the early dawn hours, the ambient air temperature may have dropped several degrees and the engine temperature won't be able to change as rapidly. As a result, both the engine coolant and ambient air temperatures may be within the 40° F - 90° F range, but may not necessarily be within 10° F of each other, even though the vehicle has been parked over night.

Cruise Information

Low-Speed Cruise

The low-speed cruise operating condition is important for several monitors, such as the catalyst efficiency and oxygen sensor monitors, and for some vehicles, the EGR system.

Catalytic converter efficiency determination is based on oxygen storage capacity (OSC). High OSC translates to high converter efficiency, and low OSC indicates a catalytic converter malfunction. OSC is calculated from exhaust oxygen sensors (O2Ss) located in front (pre-catalyst) and in back (post-catalyst) of the catalytic converter(s). In order to use O2S signals for catalyst efficiency determination, the catalyst must be at normal operating temperatures and engine load conditions need to be stable long enough to gather the amount of information to calculate OSC.

The most common strategy for catalytic converter efficiency determination includes monitoring pre- and post-catalyst O2S signals during a low-speed (approximately 40mph) cruise with engine load conditions steady, which results in steady exhaust flow rates. To help ensure steady exhaust flow, the A/C compressor should be off.

TEST PROCEDURE DETAILS & DESIGN RATIONAL OBD Readiness Indicator Reset

Once a Readiness Indicator indicates a system as having been monitored, the Readiness Indicator remains "Ready" until a reset occurs. A reset will occur if any of the following events take place, and result in all* Readiness Indicators for the noncontinuous monitors resetting to "Not Ready":

If the PCM loses connection to the battery positive or negative circuit(s).
 If battery voltage goes below a minimum value.

(3) When DTC information is cleared from PCM memory with a scan tool.

(4) If the PCM uses EEPROM technology and is able to be reprogrammed, Readiness Indicators will be reset during the reprogramming procedure.

*Some PCM's store Readiness Indicator information in non-volatile memory and are only reset during the scan tool DTC information clear process. These systems also store MIL status in non-volatile memory and MIL status is only reset with the DTC information clear process.

6.21 DTCs

TEST PROCEDURE DETAILS & DESIGN RATIONAL MIL Command ON & DTCs

Diagnostic Trouble Codes (DTCs) are 5-digit alpha-numeric codes with which the OBD system uses to specify the type and general location of malfunctions.

P0420

Each DTC has an associated test that is designed to detect a failure with an emissions control system/component, or system/component that is used for monitoring an emission control system.

WORLDWIDE ENVIRONMENTA RODUCTS INC

> When an emissions related problem has been detected and confirmed to be an actual component or system malfunction that may cause emissions to exceed applicable standards, the OBD system will command the MIL ON to alert the driver that the vehicle is in need of service, and will store the applicable DTC information.

Vehicles will fail the emissions test if the OBD system has stored one or more DTCs that cause the MIL to illuminate. Vehicles will not fail the emissions test due to the presence of DTCs only.

Vehicles will fail the emissions test if the OBD system commands the MIL ON even though there may be no DTCs stored in the system.

Click here for information related to DTC Service Modes Click here for DTC operation Click here for DTC operation Click here for examples of DTCs Click here for examples of DTCs

DTC Details

Specific DTCs-Examples

DTC	NAME/DESCRIPTION
0170	Fuel Trim Malfunction (Bank 1)
0171	System too lean (Bank 1)
0172	System too rich (Bank 1)
0300	Random or multiple cylinder misfire detected
0301*	Cylinder #1* misfire detected
0420	Catalyst System Efficiency Below Threshold Bank 1
0430	Catalyst System Efficiency Below Threshold Bank 2
0439	Catalyst Heater Control Circuit Bank 2
0600	Serial Communication Link
0650	MIL Control Circuit/Open
202A	Reductant Tank Heater Control Circuit/Open
2443	Cylinder 17 Deactivation/Intake Valve Performance

*DTCs P0301 - P0312 are related to misfire in specific cylinders

DTC and MIL Illumination

Test Procedure Details and Design Rational DTCs and MIL Illumination

A vehicle does not fail an emissions test due to the presence of DTCs alone. This is because of the operational rules of DTCs that have been standardized for all lightduty gasoline powered vehicles since 1996 MY.

If a malfunction that caused the MIL to illuminate is not present for 3 consecutive operating events where the test(s) related to the MIL illuminating malfunction runs and passes, the MIL is allowed to extinguish, but the DTC(s) will remain in memory for a duration of 40 warm-up cycles.

Because of this allowance, a vehicle does not, and should not, fail the emissions test based solely upon the presence of DTCs.

DTC Related Service Modes

Test Procedure Details and Design Rational MIL Command ON & DTCs

During the emissions test, communications between the vehicle OBD system and the off-board testing equipment is facilitated through the use of several different service modes. There are 3 different service modes related to retrieving DTCs:

- Service Mode \$03 retrieves DTCs that identify confirmed emissions-related malfunctions and will cause the MIL to be commanded ON when the malfunction is first confirmed. Mode \$03 DTCs will be printed on the VIR if the MIL is currently commanded ON.
- Service Mode \$07 retrieves DTCs that identify emissions-related malfunctions which have not yet been confirmed and consequently have not yet caused the MIL to illuminate. Mode \$07 DTCs are not printed on the VIR.
- Service Mode \$0A retrieves DTCs that can only be deared by the vehicle OBD system after the malfunction has been determined to be no longer present and the MIL is no longer being commanded ON. A permanent DTC is stored when a confirmed (Mode \$03) DTC is stored and is commanding the MIL to illuminate.

6.22 Vehicle Communications

TEST PROCEDURE DETAILS & DESIGN RATIONAL Vehicle Communications Summary

Vehicles will fail the communications portion of the emissions test if the vehicle does not maintain sufficient voltage to the DLC during OBD communication or if the OBD system does not transmit the necessary information to the inspection equipment.

If the vehicle does not communicate after the second communication attempt, inspectors shall verify that a valid communications failure exists by using the MDAS OBD verification tool to verify the communication failure according to the lane software procedures.

If the OBD verification tool determines that the DAD is not capable of communicating with the vehicle, the MDAS will automatically abort the OBD test and generate an emissions VIR to describe the failure.

If the OBD verification tool determines that the DAD is capable of communicating with the vehicle, inspectors are required to make one additional communication attempt. If the vehicle does not communicate with the MDAS, the MDAS shall determine and record the reason for this failure and print this reason on the emissions VIR.

6.23 Emissions Testing Summary

TEST PROCEDURE DETAILS & DESIGN RATIONAL Emissions Testing Summary

To accurately conduct an emissions test, the inspector must know:

- The various appearances of the MIL and range of behaviors during KOEO;
- Normal MIL operation and possible variations during KOER;
- The appearance and location of the DLC;
- Proper on- and off-board DLC connection and disconnection procedures;
- · Proper vehicle operating conditions during each step of the emissions test;
- How to properly conduct a self-test during a non-communication event to identify whether the vehicle or the equipment is at fault;
- How to accurately interpret VIR information.

7.1 Control Systems Introduction

7.2 Control Systems pg 2

EMISSION CONTROL DEVICE FUNCTION, CONFIGURATION, & INSPECTION OBD Systems

Modern OBD systems represents major advancements in the detection and identification of emissions-related malfunctions. OBD requirements not only improve fault detection, OBD regulations also standardize:

- Emissions-related terminology,
- · Data communications between on-board and off-board computer systems,
- Diagnostic Link Connector (DLC),
- Malfunction Indicator Light (MIL),
- Readiness Indicator operation,
- Stored diagnostic information, including diagnostic trouble codes (DTCs) and stored engine conditions (Freeze Frame).

OBD conducts the monitoring and fault detection/notification processes related to the vehicle's emission control system and powertrain operation. Monitoring and

evaluation for proper operation of the powertrain, emission control systems, and any other component or system that is part of a diagnostic strategy used in emissions

controls or fault detection, occurs as often as vehicle operating conditions will allow. Diagnostic information stored in on-board computer memory is designed to aide

diagnosticians more efficiently identify, repair, and verify repairs of emissions-related malfunctions.

7.3 AIR Systems

EMISSION CONTROL DEVICE FUNCTION, CONFIGURATION, & INSPECTION Secondary Air Injection Reaction (AIR) Systems

Secondary Air Injection Reaction (AIR) Systems have been used on spark ignition engines since the 1970's. The main purpose of AIR systems is to reduce HC emissions during cold engine operating conditions. Due to the rich air/fuel ratio needed for good engine performance during cold conditions, HC emissions are much higher.

AIR systems are designed to direct fresh air under pressure into the exhaust stream immediately after the exhaust ports. The fresh air mixes with hot exhaust gases and continues the combustion of fuel (HCs) not burned in the combustion

Electronically controlled AIR systems typically consist of an electrically driven pump and a solenoid operated directional control valve to either allow air to flow from the pump to the exhaust system or to be diverted away from the exhaust system, depending on engine operating conditions. chamber. As an additional benefit, CO molecules may combine with oxygen to form CO₂, reducing CO emissions during cold start as well.

AIR OBD Monitoring

Emission Control Devices and Systems: AIR System Monitoring

OBD monitoring of AIR systems not only identifies electrical circuit failures but also identifies system performance malfunctions such as air flow to the wrong position, physically inoperative switching valves or pumps that have restricted or no flow.

Although there are several methods used by the vehicle manufacturers to verify proper AIR system performance, a common approach includes monitoring the pre-catalyst exhaust oxygen sensor (O2S1) and comparing the change in the signal to the commanded change of the AIR pump's ON/OFF state. If the pump and related flow controls are operating properly, there will be a direct correlation.

7.4 A/C Systems

EMISSION CONTROL DEVICE FUNCTION, CONFIGURATION, & INSPECTION Air Conditioning (A/C) Systems

Typically, the A/C system is not included in emissions inspections, however, due to OBD monitoring requirements there may be vehicles that may have the A/C system monitor supported.

1996 through 2005 model year vehicle monitoring requirements for the Air Conditioning (A/C) system is limited to refrigerant compounds that can harm the stratospheric ozone layer or are reactive in forming atmospheric ozone. Any loss of refrigerant must be detected. Monitoring of the A/ C system includes detection of any faults with the sensors for the A/C system. Once a leak has been detected, the MIL must remain illuminated until the leak has been repaired. Manufacturers using federally approved refrigerants (i.e., R-134A for automobiles) need not comply with this monitoring requirement.

According to the OBD requirements from EPA and the California Air Resources Board (CARB), beginning model year 2006, vehicle manufacturers using ".. an engine control strategy that alters off idle fuel and/or spark control when the A/C system is on, the OBD II system shall monitor all electronic air conditioning system components for malfunctions that cause the system to fail to invoke the alternate control while the A/C system is on or cause the system to invoke the alternate control while the A/C system is off. Additionally, the OBD II system shall monitor for malfunction all electronic air conditioning system components for montened system components that are used as part of the diagnostic strategy for any other monitored system or component. ...If no single electronic component failure or deterioration causes emissions to exceed 1.5 times any of the appropriate applicable emission standards...nor is used as part of the diagnostic strategy for any other monitored system or component, manufacturers are not required to monitor any air conditioning system component..." CARB 1968.2

7.5 Catalytic Converter Systems

In the U.S.A., catalytic converters have been used with spark-ignition engines (engines fueled with gasoline, natural gas and propane) since the 1970's. As catalytic converters became more common, leaded fuel was phased out of use due to the lead contamination that occurred inside the catalytic converters.

Modern catalytic converters are typically referred to as 3-Way Converters (TWCs) because they are designed to split NOx (NO and NO₂) into nitrogen (N₂) and oxygen (O and O₂), as well as combine oxygen with HCs to produce water (H₂O) and carbon dioxide (CO₂) and combine oxygen with carbon monoxide (CO) to produce carbon dioxide (CO₂).

A catalyst helps promote chemical reactions under conditions the reaction wouldn't normally occur, and is not consumed in the reaction. As a result, a catalytic converter is designed to last the lifetime of the vehicle and will not "wear out" through normal use. Certain malfunctions, such as engine misfire, create conditions that can permanently damage a catalytic converter.

click for more

Click here for information elated to TWC System OBD Monitoring Beck to Section 3: HC's Because of the importance of the Catalytic Converter, the GVIP program requires the TWC Monitor to be supported by the vehicle's OBD system.

Damaged TWC

Emission Control Devices and Systems: TWC Damage

TWC internal damage as shown in the photograph, is caused by excessive heat resulting from excessive amounts of unburned fuel passing through the engine. As the unburned fuel (HCs) come in contact with the catalyst sites, the hydrogen and carbon atoms separate, releasing a large amount of heat energy. If too much heat energy is released in a short amount of time, the metal and ceramic materials will melt.

Chemicals such as lead, glycol-based engine coolants, carbon (soot), silicon additives in fuels and sealants, and phosphorus from engine oils can poison the catalytic converter by accumulating on the surface of the catalyst sites.

Poison accumulations restrict exhaust emissions from contacting the catalyst sites, lowering catalytic converter efficiency.

Mostⁱ poisons will not permanently damage the catalytic converter, but if the source of the poison is not removed in time, the buildup will prohibit normal operating temperatures from being reached and the poison will not eventually burn off.

Lead is a permanent poison for catalytic converters

TWC OBD Monitoring

Emission Control Devices and Systems: TWC OBD Monitoring

Three Way Catalyst (TWC) operation is monitored for efficiency once the TWC(s) have reached normal operating temperatures and a steady operating state has been achieved. TWC temperatures are determined by:

- Calculations based on operating conditions since engine start and/or
- A TWC temperature sensor providing input to the PCM

Currently vehicle manufacturers have used monitoring strategies that include HO25's in front and back of the TWC(s). By monitoring the HO2S signals, oxygen storage capacity (OSC) of the TWC is determined and TWC efficiency can be calculated. Currently for many systems, monitoring takes place during a steady cruise while engine loads are fairly stable. For this monitoring strategy, the front and rear HO25 signals are compared over a sample period to determine TWC OSC and calculate TWC efficiency.

7.6 Crankcase Ventilation Systems - Spark Ignition Engines

PCV Valve Details

Emission Control Devices and Systems: Positive Crankcase Ventilation (PCV) Valve

The most common method of crankcase vapor flow control uses a variable orifice valve (Positive Crankcase Ventilation or PCV valve) along with a calibrated spring that works with intake manifold pressure to determine the exact placement of the tapered valve relative to the orifice. As the tapered valve is moved against spring pressure, the valve regulates the amount of vapor flow, preventing too much flow during low intake manifold pressure conditions, but helping to ensure adequate flow is possible during high pressure conditions in the intake manifold. The valve also helps to prevent any back-fire in the intake manifold from being transmitted to the crankcase.

Page | 86

PCV System OBD Monitoring

Emission Control Devices and Systems: OBD Monitoring Requirements for PCV Systems

PCV system monitoring requirements began with vehicle model year 2002 and were phased in through 2004. Monitoring of the PCV system is part of the Comprehensive Component Monitor and is required to identify if a disconnect occurs between the PCV valve and the engine crankcase or between the PCV valve and intake manifold. Exceptions to the monitoring requirement include the following engine design features:

 PCV systems designed such that the PCV valve is fastened directly to the crankcase in a manner which makes it significantly more difficult to remove the valve from the crankcase rather than disconnect the line between the valve and the intake manifold (taking aging effects into consideration)

 Connections between the PCV valve and crankcase are resistant to deterioration or accidental disconnection, are significantly more difficult to disconnect than the line between the valve and the intake manifold, and are not subject to disconnection per manufacturer's repair procedures for non-PCV system repair work.

 If a disconnect between the PCV valve and the intake manifold (1) causes the vehicle to stall immediately during idle operation; or (2) is unlikely due to a PCV system design that is integral to the induction system (e.g., machined passages rather than tubing or hoses).

To accommodate these exceptions so PCV system monitoring is not required, manufacturers have taken different approaches to redesigning PCV systems such as using a threaded connection between the PCV valve and engine crankcase or valvetrain cover or incorporating an integrated fixed size orifice into a fitting at the crankcase or valve cover.

7.7 Crankcase Ventilation Systems - Compression Ignition Engines

Page | 87

7.8 EECS

EMISSION CONTROL DEVICE FUNCTION, CONFIGURATION, & INSPECTION Evaporative Emissions Control Systems (EECS)

Evaporative Emissions Control Systems (EECS) are designed to reduce HC emissions on gasoline powered vehicles.

HC evaporative emissions come from any area where fuel is stored on the vehicle, such as fuel tanks. In an effort to reduce fuel vapors from escaping to the atmosphere during refueling events, vehicle manufacturers have incorporated on-board fuel vapor

recovery into the EECS.

The EECS is designed to store fuel vapors at times when the engine is not able to use (combust) the vapors, but release (purge) the fuel vapors during operating conditions when the engine can combust the fuel vapors. There are many different system designs, but all systems have a storage canister with a source of fresh air into the canister, some type of sealing system on the fuel refill side (fuel cap or other), control valves/ solenoids, and vacuum hoses connecting the various components together.

> **Examples** of different EECS storage canisters

> > 0

7.9 EGR Systems

EMISSION CONTROL DEVICE FUNCTION, CONFIGURATION, & INSPECTION Exhaust Gas Recirculation (EGR) Systems

Exhaust Gas Recirculation (EGR) systems are designed specifically to help reduce NOx emissions in both spark (gasoline, CNG, etc.) and compression ignition (diesel) engines. Since NOx emissions are formed under high temperature conditions, the function of the EGR system is to reduce overall combustion chamber temperatures.

Temperature reductions are achieved by introducing a small, metered amount of exhaust gas back into the intake system. The exhaust gas partially fills the combustion chamber, reducing the amount of room for air, and as a result, less fuel is needed. With less air and fuel in the combustion chamber, less heat energy is released during the combustion process, and NOx emissions are reduced. Some vehicle manufacturers also list the EGR system as a fuel economy system due to the reduced fuel used while the EGR

system is operational. EGR systems use either an external valve to meter exhaust gas flow from the exhaust system to the intake manifold, or a variable timing camshaft system that varies the amount of exhaust and intake valve overlap.

Electronic EGR

7.10 EGR Systems pg 2

EGR OBD Monitor

Emission Control Devices and Systems: EGR OBD System Monitor

The EGR system can be monitored several different ways, but one of the most common methods to verify proper EGR functionality is to open the EGR valve during an extended deceleration event and monitor both the EGR pintle position, as well as the change in intake manifold pressure. As the EGR valve opens, exhaust gas flows into the intake manifold and causes an increase in the intake manifold pressure. The rate of pressure change should match predetermined values based on the position of the EGR valve's pintle.

EGR System Variations

Emission Control Devices and Systems: EGR System Variations

Some vacuum controlled EGR systems use an external Backpressure Transducer in order to better regulate the vacuum signal to the EGR valve. The Backpressure Transducer is a critical component to the EGR system and must have all the necessary vacuum and exhaust fittings/connections in place and secured for proper operation.

Many engines now use some type of variable valve timing (VVT) system which varies camshaft timing relative to the crankshaft on either the intake, exhaust or both camshafts. Variable valve timing provides many benefits including reduced pumping losses, increased volumetric efficiency, removal of the external exhaust gas recirculation system with improved exhaust gas recirculation distribution among cylinders which all add up to improved torque across a wider engine RPM range.

7.11 O2S Systems

EMISSION CONTROL DEVICE FUNCTION, CONFIGURATION, & INSPECTION Exhaust Oxygen Sensor (O2S) Systems

One of the significant advancements in vehicle emissions controls is the electronic spark and fuel injection engine management system with feedback information to more closely control the spark timing and fuel being delivered based on the amount of oxygen available in each combustion event. Intake air volume and density can be

calculated or measured through the With the intake air mass known, a base fuel use of sensors that are able to provide injection pulse can be calculated for the input data that represents critical current vehicle operating conditions. To engine operating conditions such as further adjust or "trim" injector pulse width, Mass Air Flow (MAF), Manifold exhaust oxygen must be determined. Absolute Pressure (MAP), Throttle Conventional exhaust oxygen sensors (O2S) Position (TP), Engine Coolant are able to detect oxygen in the exhaust Temperature (ECT) and Engine RPM. stream and provide a signal that represents oxygen amounts above (lean) and below (rich) the target 14.7:1 air to fuel ratio.

7.12 O2S Systems

O2S System OBD Monitoring

Emission Control Devices and Systems: O2S System OBD Monitoring

Oxygen sensors (O2S) or Heated O2S (HO2S) used for fuel control are required to be monitored for proper response rate, output voltage, and any other operating characteristic that affect emissions.

Response rate of an HO2S is the time required for the signal to switch from below/above and above/below calibrated levels, indicating the variations in exhaust oxygen content. The switching must occur within a predetermined amount of time. The ability of the HO2S to accurately respond to the changes in exhaust oxygen content is critical for accurate feedback to the PCM for proper air/fuel control.

7.13 Heated O2S Systems

EMISSION CONTROL DEVICE FUNCTION, CONFIGURATION, & INSPECTION Heated Exhaust Oxygen Sensor (O2S) Systems

In order to provide important exhaust oxygen information as soon as possible after engine start, most exhaust oxygen sensors use some type of a heater system in order to bring the sensor element up to operating temperature quickly without causing thermal shock or other damage to the sensing element.

O25 heaters are built in to the sensor and are not serviced

separately from the sensor itself.

The O2S Heater monitor is separate from the O2S monitor in order to allow unique Monitor Readiness display. Separate Monitor Readiness more clearly indicates monitoring progress of the complex exhaust oxygen sensing system.

O2S heater monitoring includes heater circuit continuity and performance. Performance can be determined through time-to-activity or by measuring heater

7.14 Diesel Exhaust Catalyst Systems

7.15 Emission Control Devices and Systems Summary

EMISSION CONTROL DEVICE FUNCTION, CONFIGURATION, & INSPECTION Summary

A visual inspection of the vehicle emission control systems and components should include verifying all related electrical connections are securely connected to the related device and free from corrosion, and that the wiring is properly routed away from any moving components or other abrasive surfaces.

Exhaust system plumbing should be free from corrosion and/or leaks. Post-TWC O2Ss should not be threaded in to any type of spacer or extension.

All vacuum components and hoses should be properly connected and routed properly away from heat sources or abrasive surfaces.

8. Quality Control Procedures and Purpose

8.1 Quality Control

QUALITY CONTROL PROCEDURES & PURPOSE

The GVIP has many features that address all aspects of a successful IM program. Program management and enforcement involves the Missouri Department of Natural Resources (DNR) and Missouri State Highway Patrol (MSHP).

NATURAL

MISSOURI The mission of the DNR is to protect our air, land and water; to preserve our unique natural and historic places; and to provide recreational and learning **RESOURCES** opportunities for everyone.

The mission of the MSHP is to serve and protect all people by enforcing laws and providing services to ensure a safe and secure environment.

DNR and MSHP work together to develop and prosecute cases of inspection fraud, which sometimes involves working with the Federal EPA. License suspension, revocation, fines and even inspector jail time are potential consequences of emissions inspection fraud.

8.2 Enforcement Actions

Lockouts pg1

Quality Control Procedures and Purpose Quality Control for Emissions Inspection Stations: Lockouts

The department or MSHP may electronically lockout any emissions inspector, station, MRRT, or equipment if the department or MSHP identifies any irregularities within the emissions inspection database or any irregularities identified during either overt or covert audits. The lockout may precede warnings, license suspensions or revocations, or arrests. A lockout warning will be displayed on the monitor of any inspection equipment that is locked out by the department or MSHP. Lockouts shall prevent the performing of emissions inspections by the locked out party. Lockouts shall be cleared when the department or MSHP is satisfied that there is no longer a need for the lockout. Irregularities include, but are not limited to:

* Failure to enter all required information properly and accurately;

* Uploading unclear pictures, uploading license plate pictures that do not match the

license plate recorded on the VIR, or failing to upload pictures ;

* Clean scanning;

* Performing more inspections than are physically possible for a given time duration;

* Performing emissions inspections using another emissions inspector's fingerprint or password;

* Conducting off-line inspections while the emissions equipment is not connected to the VID, unless the VID is off-line;

* Conducting improper safety inspection of the air pollution control devices;

Lockouts pg2

Quality Control Procedures and Purpose Quality Control for Emissions Inspection Stations: Lockouts

* Bad faith or fraudulent repairs performed at the emissions inspection station or MRRT repair facility where-

(I) Vehicles repeatedly fail reinspections for the same reasons that they initially failed the OBD test;

(II) Vehicle repairs are not qualifying repairs; or

(III) Physical visual inspection of the repaired vehicles determines that the repairs were not performed as described on the submitted repair receipts;

* Installing or assisting motorists with the installation of aftermarket catalytic converters that do not conform to EPA's AMCC enforcement policy;

* Installing or assisting motorists with the installation of aftermarket components that disable or compromise the capabilities of the vehicle manufacturer's EPA-certified emissions control system;

* Failure to maintain a positive balance of emissions inspection credit authorizations; * Failure to upload the emissions inspection results to the VID immediately upon

completion of the inspection ;

* Failure to properly re-inspect vehicles that failed an initial emissions test;

* Failure to pay the VID Service Fees according to the terms of the contract between the contractor and licensed emissions inspection;

* Failure to download and install the latest version of lane software to the MDAS; and

* Failure to maintain dedicated data transmission capabilities for the emissions inspection equipment to stay online with the contractor's VID.

WORLDWIDE

QUALITY CONTROL PROCEDURES & PURPOSE

Quality Control for Emissions Inspection Stations

All mandatory emissions testing programs such as the GVIP are required by EPA to include covert performance audits as part of the ongoing quality assurance program. The purpose of the covert program is to determine whether or not proper procedures are being followed by the inspector.

The department shall cause unannounced tests of facilities that inspect, repair, service, or maintain motor vehicle emissions components and equipment. This includes submitting vehicles for testing that have known defects for inspection and repair without prior disclosure to the facility.

8.4 Quality Control for Inspection Stations

QUALITY CONTROL PROCEDURES & PURPOSE Quality Control for Emissions Inspection Stations – Page 1

Emissions inspection windshield stickers will be issued to an emissions inspection station by the MSHP and can be printed by only that station. Emissions inspection windshield stickers shall be kept secure to prevent them from being lost, damaged, or stolen. If windshield stickers are lost, damaged, or stolen, the incident shall be reported immediately to the MSHP at (314) 416-2180 extension 4358.

The inspection of a vehicle shall be made only by an individual who has a current, valid emissions inspector license. No person without a current, valid emissions inspector license shall issue an emissions VIR or a windshield sticker. No owner, operator, or employee of an inspection station shall furnish, loan, give, or sell an emissions VIR or windshield sticker to any person except those entitled to receive it because their vehicle has passed the emissions inspection.

All emissions inspections must be conducted at the licensed emissions inspection station in the approved inspection area.

8.5 Section Summary

QUALITY CO	NTROL PROCEDURES & Summary	& PURPOSE
Gate		am
The best qu comes from vehicle ins the Missou detai	uality control for the GVIP the inspector group perfo pections in the manner ou ri Code of State Regulatior iled in this training progra	program rming the tlined in ns and as m.
Remember that as a certified in The overall integrity of the The officials at the DNR, MS	nspector, the quality of the under your control. e program relies on you an HP and WEP will help in an questions or concerns.	e vehicle inspection is directly d your fellow inspectors. y way they can if you have
Dept. Natural Resources (314) 416-2115	Highway Patrol (314) 416-2180	WEP (800) 832-7664 main (714) 990-3100 fax

9. Public Relations

9.1 Public Relations

	PUBLIC RELATIONS	
The GVIP Information Center contains a great deal of information that is designed for the	Each tab across the top of the page has a drop-down list that appears when the mouse cursor hovers above each tab.	
driving public, as well as	GVIP	A LA ST MINE
statio Inspection In	Contact the Gateway VIP Program	L
Continuent this between the second se	Department of Natural Resources Inspection and Maintenance Section 7545 S. Lindbergh, Suite 210 St. Louis, Mol 5125 314-416-2115 or 100-351-4422 Emit: Immediate and anter	Opus Imspection 6681 South Cottonwood, Suite. 1 Marray, UT 94107 Troll-free 806-623-8378 Telephone 801-265-0099 February 2012
Readiness Monitor	Driving Directions	LBY 001-403-1123
Aufor Textiliniques Information	Missouri State Highway Patrol Motor Vehicle Inspections Division	Department of Revenue Central Office Harry S Truman State Office Building
Kinami Buartent (d Rosswa Rofor Tablich Information - Augustant, terr telefa - Augustant, terr terr terr terr terr terr terr te	3180 Koch Road St. Laws, MD 63125 Telephone 314-516-2180 www.makp.dps.missouri.gov	301 West High Street Jefferson City, MO 65101 Hotor Vehide: 527-526-3669 Email: dormai@dor.mo.gov DOR.License/Registration Offices

9.2 Operating Hours-Customer Wait Times

<text><text><text><text>

9.3 Station Signs and Poster Display

PUBLIC RELATIONS

The official sign designating the station as an emissions inspection station is required to be displayed in a location visible to motorists driving past the inspection station.

Each station will also be provided with a poster that informs the public that required repairs or corrections need not be made at that inspection station. Waiver and exemption options are also described. The poster is required to be displayed in a conspicuous location discernible to those presenting vehicles for emissions inspections.

Additional signs and posters may be purchased using a purchase requisition form found in the document section of the inspection tablet for a fee equal to the cost to the state for each. The signs/posters will be delivered by a DNR Air Pollution Control Program Inspection Maintenance auditor.

9.4 Public Relations - Summary

10. Vehicle Inspection Safety and Health Issues

10.1 Inspection Safety

10.2 Course Summary

